[信号与系统]模拟域中的一阶低通滤波器和二阶滤波器

news/2024/7/1 22:46:43/文章来源:https://blog.csdn.net/Andius/article/details/139860807

前言

不是学电子出身的,这里很多东西是问了朋友…

模拟域中的一阶低通滤波器传递函数

模拟域中的一阶低通滤波器的传递函数可以表示为:

H ( s ) = 1 s + ω c H(s) = \frac{1}{s + \omega_c} H(s)=s+ωc1

这是因为一阶低通滤波器的设计目标是允许低频信号通过,同时衰减高频信号。具体来说,它的频率响应特性决定了这个形式的传递函数。

1. 传递函数的来源

一阶低通滤波器的传递函数来源于它的微分方程描述。考虑一个简单的RC(电阻-电容)电路:

  • 电阻 R R R
  • 电容 C C C
    在这里插入图片描述

高通滤波器

对于高通滤波器电路(左图),我们有一个电容 C 1 C_1 C1 和一个电阻 R 1 R_1 R1

  1. 阻抗计算

    • 电容的阻抗 Z C = 1 j ω C 1 Z_C = \frac{1}{j\omega C_1} ZC=C11
    • 电阻的阻抗 Z R = R 1 Z_R = R_1 ZR=R1
  2. 电路分析

    • 输入电压 V i n V_{in} Vin 加在电容和电阻的串联上。
    • 输出电压 V o u t V_{out} Vout 在电阻上。

使用分压公式:

V o u t = V i n ⋅ Z R Z R + Z C = V i n ⋅ R 1 R 1 + 1 j ω C 1 = V i n ⋅ R 1 ⋅ j ω C 1 1 + j ω R 1 C 1 V_{out} = V_{in} \cdot \frac{Z_R}{Z_R + Z_C} = V_{in} \cdot \frac{R_1}{R_1 + \frac{1}{j\omega C_1}} = V_{in} \cdot \frac{R_1 \cdot j\omega C_1}{1 + j\omega R_1 C_1} Vout=VinZR+ZCZR=VinR1+C11R1=Vin1+R1C1R1C1

所以,传递函数 H ( s ) H(s) H(s) 是:

H ( s ) = V o u t V i n = j ω R 1 C 1 1 + j ω R 1 C 1 = s R 1 C 1 1 + s R 1 C 1 H(s) = \frac{V_{out}}{V_{in}} = \frac{j\omega R_1 C_1}{1 + j\omega R_1 C_1} = \frac{s R_1 C_1}{1 + s R_1 C_1} H(s)=VinVout=1+R1C1R1C1=1+sR1C1sR1C1

ω c = 1 R 1 C 1 \omega_c = \frac{1}{R_1 C_1} ωc=R1C11,则传递函数为:

H ( s ) = s / ω c 1 + s / ω c H(s) = \frac{s / \omega_c}{1 + s / \omega_c} H(s)=1+s/ωcs/ωc

低通滤波器

对于低通滤波器电路(右图),我们有一个电阻 R 1 R_1 R1 和一个电容 C 1 C_1 C1

  1. 阻抗计算

    • 电阻的阻抗 Z R = R 1 Z_R = R_1 ZR=R1
    • 电容的阻抗 Z C = 1 j ω C 1 Z_C = \frac{1}{j\omega C_1} ZC=C11
  2. 电路分析

    • 输入电压 V i n V_{in} Vin 加在电阻和电容的串联上。
    • 输出电压 V o u t V_{out} Vout 在电容上。

使用分压公式:

V o u t = V i n ⋅ Z C Z R + Z C = V i n ⋅ 1 j ω C 1 R 1 + 1 j ω C 1 = V i n ⋅ 1 j ω R 1 C 1 + 1 V_{out} = V_{in} \cdot \frac{Z_C}{Z_R + Z_C} = V_{in} \cdot \frac{\frac{1}{j\omega C_1}}{R_1 + \frac{1}{j\omega C_1}} = V_{in} \cdot \frac{1}{j\omega R_1 C_1 + 1} Vout=VinZR+ZCZC=VinR1+C11C11=VinR1C1+11

所以,传递函数 H ( s ) H(s) H(s) 是:

H ( s ) = V o u t V i n = 1 1 + j ω R 1 C 1 = 1 1 + s R 1 C 1 H(s) = \frac{V_{out}}{V_{in}} = \frac{1}{1 + j\omega R_1 C_1} = \frac{1}{1 + s R_1 C_1} H(s)=VinVout=1+R1C11=1+sR1C11

ω c = 1 R 1 C 1 \omega_c = \frac{1}{R_1 C_1} ωc=R1C11,则传递函数为:

H ( s ) = 1 1 + s / ω c H(s) = \frac{1}{1 + s / \omega_c} H(s)=1+s/ωc1

微分方程形式

这个电路的微分方程可以写为:

V o u t ( t ) = 1 R C ∫ − ∞ t V i n ( τ ) e − t − τ R C d τ V_{out}(t) = \frac{1}{RC} \int_{-\infty}^{t} V_{in}(\tau) e^{-\frac{t - \tau}{RC}} d\tau Vout(t)=RC1tVin(τ)eRCtτdτ

通过拉普拉斯变换,将其转化到频域:

V o u t ( s ) V i n ( s ) = 1 R C ⋅ s + 1 \frac{V_{out}(s)}{V_{in}(s)} = \frac{1}{RC \cdot s + 1} Vin(s)Vout(s)=RCs+11

ω c = 1 R C \omega_c = \frac{1}{RC} ωc=RC1,得到:

H ( s ) = 1 s + ω c H(s) = \frac{1}{s + \omega_c} H(s)=s+ωc1

2. 频率响应

一阶低通滤波器的传递函数 H ( s ) H(s) H(s) 表示了滤波器对不同频率信号的响应:

  • s = j ω s = j\omega s= 时,低频( ω \omega ω 较小)信号通过的幅度接近 1,即通过率高。
  • ω \omega ω 较大时,传递函数的值接近 0,即高频信号被大大衰减。

3. 截止频率

ω c \omega_c ωc 是滤波器的截止频率,即在该频率处信号的幅度被衰减到原来的 1 2 \frac{1}{\sqrt{2}} 2 1 倍(约 0.707 倍)。它定义了低通滤波器允许通过的最大频率。

综上所述,模拟域中的一阶低通滤波器传递函数为:

H ( s ) = 1 s + ω c H(s) = \frac{1}{s + \omega_c} H(s)=s+ωc1

是由其设计目标、微分方程描述以及频率响应特性决定的。

二阶滤波器通过联级一阶滤波器的推导

二阶滤波器可以通过两个一阶滤波器串联(联级)得到。假设我们有两个一阶低通滤波器,其传递函数分别为:

H 1 ( s ) = 1 1 + s / ω c 1 H_1(s) = \frac{1}{1 + s / \omega_{c1}} H1(s)=1+s/ωc11

H 2 ( s ) = 1 1 + s / ω c 2 H_2(s) = \frac{1}{1 + s / \omega_{c2}} H2(s)=1+s/ωc21

当将这两个一阶滤波器串联时,总的传递函数 H ( s ) H(s) H(s) 为:

H ( s ) = H 1 ( s ) ⋅ H 2 ( s ) H(s) = H_1(s) \cdot H_2(s) H(s)=H1(s)H2(s)

即:

H ( s ) = ( 1 1 + s / ω c 1 ) ⋅ ( 1 1 + s / ω c 2 ) H(s) = \left( \frac{1}{1 + s / \omega_{c1}} \right) \cdot \left( \frac{1}{1 + s / \omega_{c2}} \right) H(s)=(1+s/ωc11)(1+s/ωc21)

假设两个一阶滤波器的截止频率相同,即 ω c 1 = ω c 2 = ω c \omega_{c1} = \omega_{c2} = \omega_c ωc1=ωc2=ωc,则总的传递函数为:

H ( s ) = ( 1 1 + s / ω c ) 2 H(s) = \left( \frac{1}{1 + s / \omega_c} \right)^2 H(s)=(1+s/ωc1)2

将其展开得到:

H ( s ) = 1 ( 1 + s / ω c ) 2 = 1 1 + 2 s ω c + ( s ω c ) 2 H(s) = \frac{1}{(1 + s / \omega_c)^2} = \frac{1}{1 + \frac{2s}{\omega_c} + \left( \frac{s}{\omega_c} \right)^2} H(s)=(1+s/ωc)21=1+ωc2s+(ωcs)21

这就是一个标准的二阶低通滤波器的传递函数形式。它可以表示为:

H ( s ) = 1 1 + 2 s ω c + ( s ω c ) 2 H(s) = \frac{1}{1 + \frac{2s}{\omega_c} + \left( \frac{s}{\omega_c} \right)^2} H(s)=1+ωc2s+(ωcs)21

或者更一般的形式:

H ( s ) = ω c 2 s 2 + 2 ζ ω c s + ω c 2 H(s) = \frac{\omega_c^2}{s^2 + 2\zeta\omega_c s + \omega_c^2} H(s)=s2+2ζωcs+ωc2ωc2

其中, ζ \zeta ζ 是阻尼系数,对于上述情况 ζ = 1 \zeta = 1 ζ=1。通过改变 ζ \zeta ζ 的值,可以设计出具有不同频率特性的二阶滤波器。

总结

通过将两个一阶低通滤波器串联,我们得到了一个二阶低通滤波器的传递函数。这个方法可以推广到高通、带通和带阻滤波器,通过适当的组合一阶滤波器可以实现各种复杂的频率响应特性。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.luyixian.cn/news_show_1092843.aspx

如若内容造成侵权/违法违规/事实不符,请联系dt猫网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

测绘行业解决方案-地形测量与实景三维

应用场景 - 地形测量 业务挑战 • 地形测量需要大量外业作业, 成本居高不下 • 传统采集方式采集效率低,工期长, 无法及时交付 • 传统测绘成果局限于数字线划图,无法直观展示地形地貌 无人机优势 • 能进行 1:500 免像控地形测量 • …

基于Python+Flask+MySQL+HTML的B站数据可视化分析系统

FlaskMySQLVue 基于PythonFlaskMySQLHTML的B站数据可视化分析系统 项目采用前后端分离技术,项目包含完整的前端HTML,以及Flask构成完整的前后端分离系统 爬虫文件基于selenium,需要配合登录账号 简介 主页 登录页面,用户打开浏…

深入解析 iOS 应用启动过程:main() 函数前的四大步骤

深入解析 iOS 应用启动过程:main() 函数前的四大步骤 背景描述:使用 Objective-C 开发的 iOS 或者 MacOS 应用 在开发 iOS 应用时,我们通常会关注 main() 函数及其之后的执行逻辑,但在 main() 函数之前,系统已经为我们…

[C++][设计模式][桥模式]详细讲解

目录 1.动机2.模式定义3.要点总结4.代码感受1.代码一2.代码二 1.动机 由于某些类型的固有的实现逻辑,使得它们具有两个变化的维度, 乃至多个纬度的变化如何应对这种“多维度的变化”?如何利用面向对象技术来使得类型可以轻松地沿着两个乃至多…

芒果YOLOv10改进64:主干Backbone篇RepVGG结构:简单但功能强大的卷积神经网络架构

💡本篇内容:YOLOv10改进RepVGG结构:简单但功能强大的卷积神经网络架构 💡🚀🚀🚀本博客 改进源代码改进 适用于 YOLOv10 按步骤操作运行改进后的代码即可 💡本文提出改进 原创 方式:二次创新,YOLOv10 应部分读者要求,新增一篇RepVGG 论文理论部分 + 原创最…

企业运维六边形战士 质量稳定 效率为王

随着信息化的不断深入和扩展,企业IT系统的复杂性和设备多样性日益增加。为了保障业务的高可用性和连续性,企业需要一个全面、高效、智能的一体化运维管理平台。在用户市场的推动下,LinkSLA智能运维管家展现出【六边形战士】的优质属性&#x…

UE4_材质_雨滴涟漪效果ripple effect_ben教程

学习笔记,不喜勿喷!侵权立删,祝愿生活越来越好! 雨水落下时会产生这些非常漂亮的同心环波纹,我们要做的第一件事是创建一个单个的圆环遮罩动画,我们希望环在开始的时候在中心很小,然后放大&…

基于自编码器的心电信号异常检测(Pytorch)

代码较为简单,很容易读懂。 # Importing necessary libraries for TensorFlow, pandas, numpy, and matplotlib import tensorflow as tf import pandas as pd import numpy as np import matplotlib.pyplot as plt import copy# Importing the PyTorch library im…

基于STM32的智能仓库管理系统

目录 引言环境准备智能仓库管理系统基础代码实现:实现智能仓库管理系统 4.1 数据采集模块4.2 数据处理与分析4.3 通信模块实现4.4 用户界面与数据可视化应用场景:仓库管理与优化问题解决方案与优化收尾与总结 1. 引言 智能仓库管理系统通过使用STM32嵌…

智能AI在线人工智能对话源码系统 完整的代安装码+搭建部署教程

系统概述 智能 AI 在线人工智能对话源码系统是一款前沿的技术解决方案,它融合了人工智能的强大能力,为用户提供了一个高效、智能的对话平台。该系统基于先进的算法和模型,能够理解用户的输入,并以高度准确和自然的方式进行回应。…

2024全新升级!MindManager思维导图软件,让思维无限延伸

Hey朋友们✨!今天要给大家安利一款我超级喜欢的办公神器——MindManager2024思维导图最新版本!如果你跟我一样,经常需要整理思路、规划工作或学习计划,那么你一定不能错过它!🎉 MindManager思维导图工具绿…

【linux学习十七】文件服务管理

一、FTP FTP server:FTP(File Transfer Protocol,文件传输协议 )是 TCP/IP 协议组中的协议之一 软件包:vsftpd/安装 yum -y install vsftpd//准备文件 touch /var/ftp/abc.txt //注释:FTP服务器的主目录:“/var/ftp/”,是FTP程序分享内容的本机目录…

Mac环境 aab包转apks,并安装apks

一、下载下载bundletool工具 Releases google/bundletool GitHub 二、将下载bundletool.jar包、aab、keystore文件全部放到同一个目录下 例如我全部放到download目录下 转换命令行: java -jar bundletool-all-1.16.0.jar build-apks --modeuniversal --bundle…

Shell脚本 循环语句、函数、数组

目录 Shell循环语句 概念 for循环 语法格式 批量创建用户并设置初始密码示例 批量删除用户示例操作步骤 巡检测试主机连通性示例 while循环 语法格式 批量创建、删除用户示例 随机数 控制随机数范围 0 ~ 999 0 ~ 99 0 ~ 9 使用while和随机数实现猜价格示例 un…

docker将容器打包提交为镜像,再打包成tar包

将容器打包成镜像可以通过以下步骤来实现。这里以 Docker 为例,假设你已经安装了 Docker 并且有一个正在运行的容器。 1. 找到正在运行的容器 首先,你需要找到你想要打包成镜像的容器的 ID 或者名字。可以使用以下命令查看所有正在运行的容器&#xff…

八、yolov8模型预测和模型导出(目标检测)

模型查看 模型预测 模型导出 模型训练完成后,找到训练文件生成文件夹,里面包含wights、过程图、曲线图。 模型预测 1、在以下文件夹中放入需要预测的图; 2、找到detect文件下的predict.py文件,修改以下内容。 3、右键点击…

BL104应用在智慧零售多协议采集监控远程实时查看

在智慧零售领域,如今的市场竞争日益激烈,传统的零售模式已经难以满足消费者对服务和体验的高需求。智能化技术的引入,尤其是基于物联网的解决方案,成为提升零售业务效率和服务质量的关键。钡铼BL104 Modbus转MQTT网关作为一种先进…

JSAPI微信支付提示缺少total_fee

微信小程序云开发中使用微信支付。莫名其妙的报错: 这个报错严重图文不符,驴唇不对马嘴,难排查,很恶心。 原因可能是: 1、在微信支付中关联appid; 2、在小程序云开发控制台中授权:

keepalived高可用,LVS+keepalived的实现

概述: keepalived是集群高可用的一个技术,它是一个软件,与网络技术中VRRP协议的实现相类似,都是在若干个服务集群后虚拟出的一个对外提供服务的VIP(Virtual IP),即虚拟IP,当某一台服务器发生故障时&#x…

高效电商数据分析:电商爬虫API与大数据技术的融合应用

一、引言 随着电子商务的迅猛发展和数据量的爆炸式增长,电商数据分析已成为企业决策的关键依据。在竞争激烈的电商市场中,如何高效、准确地获取并分析数据,以洞察市场趋势、优化运营策略、提升用户体验,成为电商企业面临的重要挑…